Latin_Table.csv
A,B,C,D,F,G,H,I,J L1,L1,L1,L1,L1,L1,L1,L1,L1 L1,L1,L1,L1,L1,L2,L2,L2,L2 L1,L1,L2,L2,L2,L1,L1,L1,L2 L1,L2,L1,L2,L2,L1,L2,L2,L1 L1,L2,L2,L1,L2,L2,L1,L2,L1 L1,L2,L2,L2,L1,L2,L2,L1,L2 L2,L1,L2,L2,L1,L1,L2,L2,L1 L2,L1,L2,L1,L2,L2,L2,L1,L1 L2,L1,L1,L2,L2,L2,L1,L2,L2 L2,L2,L2,L1,L1,L1,L1,L2,L2 L2,L2,L1,L2,L1,L2,L1,L1,L1 L2,L2,L1,L1,L2,L1,L2,L1,L2
Output.csv
y1,y2,y3,y4,y5,y6,y7,y8,y9 15.9,14.5,13.1,14.4,13,13.8,12.9,13.7,12.3 15.7,13.5,11.4,13.4,11.2,13.6,11.1,13.5,11.3 18.3,16.8,15.3,16,14.5,17.5,13.8,16.8,15.3 17.7,16.3,14.9,16.9,15.5,16.4,16.2,17,15.6 16.3,15.6,14.8,15.6,14.8,16.3,14.8,16.3,15.6 18.1,16.6,15.1,16.6,15.1,18.1,15.1,18.1,16.6 18.2,17.4,16.7,16.7,15.9,17.4,15.2,16.7,15.9 16.2,15.4,14.7,14.7,13.9,15.4,13.2,14.7,13.9 17.3,15.1,13,15,12.9,15.2,12.8,15.1,13 18.7,17.2,15.7,17.2,15.7,18.7,15.7,18.7,17.2 17.3,15.9,14.5,16.5,15.1,16,15.8,16.6,15.2 18,15.9,13.7,16.5,14.4,16.7,15,17.4,15.2
L12<-read.table("Latin_Table.csv",header = TRUE,sep = ",") Output<-read.table("Output.csv",header = TRUE,sep = ",") Mean <- apply(Output,1,mean) Mean_Square <- Mean*Mean Vi <- Mean - Output Vi <- Vi*Vi Vi <- apply(Vi,1,sum) Vi <- Vi/(ncol(Output)-1) SN <- (Mean_Square-(Vi/ncol(Output)))/Vi SN <- 10*log10(SN) SN_Bunsan <- cbind(L12,SN) SN.lm <- lm(SN~A+B+C+D+F+G+H+I+J,data = SN_Bunsan) summary(SN.lm) anova(SN.lm) tmppar<-par(no.readonly=TRUE) par(mfrow=c(1,ncol(L12))) SN_max <- max(SN) SN_min <- min(SN) fnames<-colnames(SN_Bunsan) x_fc <- c(NULL) y_SN <- c(NULL) for(i in 1:ncol(L12)){ fc <- factor(SN_Bunsan[,i]) x_tmp <- 1:length(levels(fc)) y_tmp <- tapply(SN_Bunsan$SN,fc,mean) plot(x_tmp,y_tmp,type="b",pch=1,xaxp=c(1,length(x_tmp),1), ylim=c(SN_min,SN_max),xlab=as.character(fnames[i]), ylab="SN_Ratio[dB]",col="red") } Sensitivity <- Mean_Square-(Vi/ncol(Output)) Sensitivity <- 10*log10(Sensitivity) Sens_Bunsan <- cbind(L12,Sensitivity) Sens_Bunsan Sens.lm <- lm(Sensitivity~A+B+C+D+F+G+H+I+J,data = Sens_Bunsan) summary(Sens.lm) anova(Sens.lm) par(mfrow=c(1,ncol(L12))) sens_max <- max(Sensitivity) sens_min <- min(Sensitivity) fnames<-colnames(Sens_Bunsan) for(i in 1:ncol(L12)){ fc <- factor(Sens_Bunsan[,i]) x_tmp <- 1:length(levels(fc)) y_tmp <- tapply(Sens_Bunsan$Sensitivity,fc,mean) plot(x_tmp,y_tmp,type="b",pch=1,xaxp=c(1,length(x_tmp),1), ylim=c(sens_min,sens_max),xlab=as.character(fnames[i]), ylab="Sensitivity[dB]",col="red") }