ここを参考に。
The Thrust Optimised Parabolic nozzle - Aspire space
http://www.aspirespace.org.uk/downloads/Thrust%20optimised%20parabolic%20nozzle.pdf
ノズル開校比ε、スロート半径Rt、ハーフコーンアングルαで形状が決定できる。
放物線形状のベル部分は2次のベジェ曲線になっている。
clear; close all; clc; % theta_n = 26;%deg % theta_e = 10.5;%deg % e = 10; %ノズル膨張率 theta_ns = [23,26,29,30,31]; theta_es = [13, 10.5, 9, 8.5, 7.8]; es = [5,10,20,30,50]; for i=1:5 subplot(5,1,i); theta_n = theta_ns(i);%deg theta_e = theta_es(i);%deg e = es(i); %ノズル膨張率 Rt = 0.1; %m L_N = 0.8*((sqrt(e)-1)*Rt/tan(deg2rad(15))); Re = sqrt(e)*Rt; % entrant section theta = deg2rad(-135:5:-90); x = 1.5*Rt*cos(theta); y = 1.5*Rt*sin(theta)+1.5*Rt+Rt; plot(x,y); hold on; % exit section theta = deg2rad(linspace(-90,theta_n-90,10)); x = 0.382*Rt*cos(theta); y = 0.382*Rt*sin(theta)+0.382*Rt+Rt; plot(x,y); % bell section Nx = x(end); Ny = y(end); Ex = L_N; Ey = Re; m1 = tan(deg2rad(theta_n)); m2 = tan(deg2rad(theta_e)); C1 = Ny-m1*Nx; C2 = Ey-m2*Ex; Qx = (C2-C1)/(m1-m2); Qy = (m1*C2-m2*C1)/(m1-m2); t = linspace(0,1,20); x = (1-t).^2*Nx+2*(1-t).*t*Qx+t.^2*Ex; y = (1-t).^2*Ny+2*(1-t).*t*Qy+t.^2*Ey; plot(x,y); title(sprintf('Nozzle expansion ratio: %d',e)); xlim([-0.2 2]); ylim([0 0.7]); end sgtitle('80% Bell nozzle design');